
How to Get More
From Your Developers
Achieving Better Vendor Performance
Though Communication and Transparency

A White Paper | June 2017

7 Actions to Success

Introduction

Perhaps you’ve seen this before: A vendor or freelancer
puts their best foot forward during the procurement
process and seems outstanding. But once the
relationship is established and work has commenced,
the vendor becomes complacent. The developer’s
performance drops in number of issues resolved, code
quality or milestones achieved. The client perceives that
the value they are receiving from the developer is worth
less than the amount they are paying.

What can clients do to improve the
performance of their software developers?

Although clients can’t change impossible situations
or make low-performing developers better, we’ve
identified seven steps they can take to achieve better
performance from their developers. These solutions
focus on communication and transparency, and can put
companies in a stronger position to find replacement
developers, if necessary.

At iQtransit our general approach is to create
transparency by making the work that the developer
is doing more visible. Therefore, we propose setting up
a knowledge management system for documentation,
switching to well-established technologies and
performing code inspections so other developers
can review their work. We also encourage effective
communication. Therefore, we recommend clients
become familiar with common communication tools
that software developers use - and use them. And we
encourage clients to reduce the startup time for new
developers beginning work on their projects.
These steps help create the competition necessary
to keep performance at the same level as when
they started.

Disclosure: Our advice comes from 20 years of
experience working with clients on web and mobile
development projects and from analyzing that data.
Because iQtransit believes this process works, we
recommend and implement these steps with our
own clients.

Action 1

Develop a Collaborative Knowledge Base

A simple and effective way to improve developer
performance is to create a simple and secure
collaborative space (or knowledge base) to store relevant
documentation about your project.

A knowledge base can improve developer performance
in a few ways. First, since knowledge is more readily
available to others, it becomes possible for another
developer to work on the project without extensive
training. This means the developer will have
“competition” from other developers who can more
easily take over if performance is lagging. We’ve seen
this have a positive effect on developer performance.

A knowledge base can also help identify “hoarders” -
members of the development team who are unwilling to
share the internals or secrets of a project (sometimes this
is done so that they can’t be replaced). A developer who
is not willing to share the secrets of the company should
be asked to improve their knowledge sharing for the
benefit of the company.

The knowledge base also improves the collective
“memory” of the corporation, codifying the obscure
aspects of the project. This can help prevent any loss
of assets were the vendor to stop working on the
project. Knowing that all knowledge is protected and
documented can force the developer to rely on their
performance instead of being de-facto holders of the
company’s knowledge.

Our Recommendation

Use a software package like Wikimedia, Atlassian
Confluence or Basecamp to set up a knowledge base
to capture project documentation and digital assets.
Encourage (and pay) your developer to capture project
details there.

Create competition with
other developers to keep
performance strong.

Action 2

Perform a Formal Code Inspection by Outside Developers

A formal code inspection can identify as much as 60%
of defects in the reviewed software code.1

In our experience, having an alternative, external
group of developers perform the inspection provides
direct improvements to productivity of developers.
A 20% increase in developer productivity due to code
inspections has also been shown in research studies.2

The code inspection should not be a threat or criticism
of the developer, but rather be a positive way to identify
errors within the code and open the hidden secrets of
the projects to others. Clients can explain that opening
the project for others is a process that should be
streamlined for other purposes as well, such as a disaster
continuity plan.

The inspection keeps the developer on their toes.
The introduction of an external party always brings up
questions for the existing vendor-developer, such
as whether the developers performing the inspection
will eventually replace them. Although this is not the
intent of the inspection, the possibility of a poor review
can motivate non-performing developers to produce
better work.

The inspection can also improve code quality.
A formal inspection has one of the highest defect-
catching rates of software quality techniques
performed today.3

Finally, the inspection can identify knowledge gaps
between management and the developer, found
when the 3rd party asks questions and reviews
existing documentation. These gaps in knowledge
can be captured in a knowledge base as they are
identified. If you decide to switch vendors, having
that documentation will make the transition easier.
Clients can also use the documentation gathered as a
requirement for disaster recovery or PCI compliance.

Our Recommendation

Hire a competent, external group of developers to
review the work product of your vendor-developers. At
the minimum, poor or sloppy programming practices
will be identified, and at the best, the vendor will
change for the better and improve performance.

1 McConnell, Code Complete, Second Edition. Page 485
2 Fagan 1976, Humphrey 1989, Gilb and Graham 1993, Wiegers 2002.
3 McConnell, Code Complete, Second Edition. Page 485

Having an external group
of developers perform
the inspection provides
direct improvements to
productivity of developers.

Action 3

Manage Source Code

In our work, we’ve found that it is not uncommon
for vendor-developers to threaten to withhold a
client’s source code for negotiating leverage. It most
often happens during a period of transition, such as
when replacing the vendor. To avoid this, we strongly
recommend that companies directly control access to
their source code. Less technical companies, who may
not understand exactly what work is being done, can
still benefit by holding the keys to the source.

Managing source code repositories can improve
communication between companies and their
vendor-developers. Today, revision control tools like
Git, Beanstalk App and Bitbucket include powerful
communication features (like “blame”) which allow
users to see every change that developers make. All
work is visible via commit logs, and can be seen with
a clickable web link. Deep communication around
that work, such as comments, pull requests, and issue
tracking also enhance the visibility and transparency
of the project. If developers are not contributing to
the project, it becomes obvious and clients can act to
improve performance.

Companies can also share the repository with other
vendors. Unlike a zip or tar file, the revision control
repository includes the complete revision history of
the project. This can be used as a tool for analysis or
forensics were a project to go bad.

Companies should be involved in the work their
developers do. Communication helps to keep them
motivated and shows your developers that you care
about the work they do. To better manage their
developers, clients should manage the source code
repository for their projects. We recommend that
clients own and hold all the master keys to software
source code. Further, by using standard cloud-based
tools, you can ensure that you are notified with every
change that occurs.

Our Recommendation

Sign up for an online distributed revision control
system such as GitHub, BeanstalkApp or BitBucket.
When you start a project with a vendor, setup a
repository for all source code and be sure the vendor
uses it. This prevents any extortion of your digital assets
and keeps you in control of the asset.

To better manage their
developers, clients should
manage the source code
repository for their projects.

Action 4

Choose Well-Established Technology

Developers always want to try out the latest technology.
However, as a client, you should acknowledge that
the developer’s goals may be different from yours
when choosing technology platforms. The developer
may want to enhance their skills for the next project,
while companies want to protect your investments
and operate at a profit. We recommend clients to be
especially wary of overengineered systems which don’t
match requirements. Most clients are not Google,
and should not be using tools designed for the world’s
largest companies.

Choosing an obscure technology can make it very
difficult to find developers for your project in the
future. Clients should reduce risk by staying away from
trendy or obscure technologies - unless they are proven
or truly needed for their unique capabilities. If your
chosen technology takes a pathway which makes it less
widely adopted (such as being eclipsed by a competing
product), your choices for developers in the future may
be either very limited - or very costly.

You can “buy time” with modern technology by
waiting until it has been proven and heavily used
before migrating or adopting. Be deliberate about your
location on the technology adoption curve4, and be
willing to stay back when you don’t truly need bleeding-
edge. (Bleeding edge technology has hidden costs
because it brings unnecessary complexity.)

Our Recommendation

Use well-established technology for non-unique
requirements. Be aware of where you are on the
technology curve to avoid unexpected technology
detours. Main-stream technology means more choices
for developers and can mean better performance from
your existing developers because they can be replaced.

4 https://en.wikipedia.org/wiki/Technology_adoption_life_cycle

When clients reduce the friction of handing a project
to another developer, they increase their leverage, which
can create improvements in developer performance.
Reduced start-up time means that a developer can re-
instate a working copy of the development environment
quickly and repeatedly.

For example, iQtransit’s projects can be reinstated with
these 2 simple commands:

% git clone http://github.com/project/
% vagrant up

Within minutes the development environment is
running on the development machine. The site or app
is in its native environment, ready to accept changes,
and it works the same whether the developer uses Mac,
Windows or Linux.

The environment can be useful for training purposes.
Because of the “disposable” nature of virtual
environments, the project can be modified to see how
it is effected by experimental changes, while being
completely isolated from other developers. This enables

other developers to be trained on the system, which can
improve vendor’s performance by creating competition
and improving skills.

With fast startup, clients can hand off small parts of
projects to more specialized, or less expensive vendors
or developers. For example, if a minor part of a large
project requires HTML development, you can invite
an HTML specialist to work on that small aspect of the
project. Without the fast startup virtualization offers,
the initialization time would be too great to make the
HTML portion of the project worthwhile to hand off,
so the less specialized (and more expensive) developer
would complete the task.

Environment management tools such as Vagrant or
Docker help to keep environments uniform among
vendors which may have more divergent backgrounds.
Because the environment will match the production
environment closely, problems with specific developer
setups become less important, reducing bugs.

Fast developer startup can give you leverage to negotiate
the development fees you pay. After all, if you can
hand off a project to another developer in a matter of
minutes, there is less barrier to overcome when finding a
competitive developer or vendor. This can be effectively
used in negotiations with your developer, providing
gains in value.

Our Recommendation

Use tools like Vagrant, VirtualBox and Docker to
reconstruct programming environments quickly. This
makes it fast and efficient for other developers to work
on the project.

Action 5

Reduce Development Setup Time

Reduced start-up time means
that a developer can re-
instate a working copy of the
development environment
quickly and repeatedly.

Action 6

Improve Access Control and Security

To efficiently hand over a project to another developer,
you need to be able to setup, share and revoke
credentials quickly and easily. You need to be sure
that all the passwords and digital keys are not only
stored safely, but also that they are accessible to those
authorized to use them.

The most sophisticated tools provide features such as
2-factor authentication, sharding (storing only portions
of keys in different locations to make exposure more
difficult), strong encryption and ability to revoke
permissions as vendors change. However, simpler tools
can suffice.

Our Recommendation

Consider using a cloud-based access control tool
such as LastPass or HashiCorp Vault to manage
secrets organizationally.

To efficiently hand over a
project to another developer,
you need to be able to setup,
share and revoke credentials
quickly and easily.

Action 7

Continuous Integration and Review

Clients should ask their developer for a password
protected stage/preview site (for web sites) which is
continually synched with a revision control system
or code repository. This allows clients to review their
developer’s progress on the site, app or software on a
continual basis, and prevents developers from periodic
slowdown, hidden within the project’s schedule.

Such systems are often called “continuous integration”
systems and considered a best practice.

Continuous integration results in improved
communication and transparency and can help “break
down barriers between customers and development”. 5

Continuous integration is the opposite of “dog and
pony show” development, which often occurs with
outsourced development teams. This occurs when the
developer assures the client that everything will be
ready in two weeks, but no feedback or communication
occurs until “demo day”. Due to the developer’s other
projects, little work gets done until the last few days.
Then, a large amount of work spent is dedicated to
the presentation of the work, meaning very little actual
work is getting done.

Our Recommendation

At the minimum, developers should offer a
continuously updated (minimum once per day),
password-protected staging site where clients can
review changes at any time. To maximize performance,
developers should be using continuous integration tools
like Jenkins, Go, or Travis CI.

5 https://www.martinfowler.com/articles/continuousIntegration.html

To maximize performance,
developers should be using
continuous integration tools.

Next Steps

Now That Every Company is a Technology Company,
Clients Need To Get The Most Out Of Their Vendors.

Clients can’t make their developers better, but they
can change how they manage them. We recommend
that you pay close attention to what your vendors are
doing, by creating collaborative systems and engaging
the communications pathways that developers already
use. Create openness and transparency so anyone can
contribute. Understand, communicate and learn as
much as you can about the work your vendors are
doing. We believe you will be rewarded with strong,
sustained performance from your development team.

Copyright © 2017, iQtransit, Inc.

Charlie Dalsass
Founder and CTO

e: charlie@iqtransit.com
s: live:charlie_1644

iQtransit, Inc.

110 Canal St. | 3rd Floor | Lowell, MA 01852

e: inquiries@iqtransit.com | p: 1-978-886-0798 | f: 1-617-507-5959

Charlie is the CTO and co-founder of iQtransit.
He was previous co-founder of Neptune Web,
and Lead Developer at Banta Integrated Media
(now R.R. Donnelly).

Clients can’t make their
developers better, but
they can change how they
manage them.

